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Abstract—In this paper, we study a new problem of seeking stable subgraph isomorphisms for a query graph in a temporal graph.

To solve our problem, we first develop a pruning-based search algorithm using several new pruning tricks to prune the unpromising

matching results during the search procedure. To further improve the efficiency, we propose a novel index structure called BCCIndex,

based on an idea of bi-connected component decomposition of the query graph, which can efficiently support the stable subgraph

isomorphism search. Equipped with the BCCIndex, we present an efficient query processing algorithm based on a carefully designed

tree join technique. We conduct extensive experiments to evaluate our algorithms on four large real-life datasets, and the results

demonstrate the efficiency and effectiveness of our algorithms.

Index Terms—Graph query, temporal graphs, subgraph isomorphism search
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1 INTRODUCTION

SUBGRAPH isomorphism (or subgraph matching) search is
a fundamental problem in graph analysis. Given a data

graphG and a query graph q, subgraph isomorphism search
is a problem of finding all subgraphs in G that are isomor-
phic to q. Such a problem has been found in a wide range of
applications in network analysis, including mining motif
substructures in biological networks [1], analyzing the evo-
lution of social networks [2], and finding syntheses of target
structures in chemistry networks [3].

In applications such as analysis of collaboration net-
works, communication networks, financial transaction net-
works, and online social networks, edges in these networks
are often associated with temporal information. For exam-
ple, in a collaboration network of scientific papers, each co-
authorship relation contains two authors and the time when
they co-authored a paper. In an email communication net-
work, each email consists of a sender, a receiver, as well as
the time when the email was sent. In a financial transaction
network, each transaction includes a sender and a receiver,
as well as the time when the transaction was completed. In
an online social network, each instant message may include
two users and the time when the message was sent. Such
networks are typically modeled as temporal graphs [4], [5].
In a temporal graph, each edge is represented as a triplet
ðu; v; tÞ where u, v are the end nodes of the edge and t

denotes the interaction time between u and v. Consider a
time sequence ft0; :::; ti; :::; tTg. Suppose that ðti � ti�1Þ is a
constant. Then, we refer to a graph as a snapshot if its tem-
poral edges appear at the time interval ðti�1; ti�.

Although the subgraph isomorphism search techniques
have been widely used in many graph analysis applications,
most previous studies on subgraph isomorphism query are
mainly tailored for traditional static and labeled graphs
which ignore the temporal information, thus cannot be
applied to analyze temporal graphs. In this paper, we focus
on the keyword “temporal” and study a new problem of
seeking stable subgraph isomorphisms in unlabeled tempo-
ral graphs. Our goal is to find all subgraph isomorphisms
for a given query graph that are stable over time. More spe-
cifically, for a query graph q and a stability threshold u, the
stable subgraph isomorphism search problem is to identify
all subgraphs that are isomorphic to q in no less than u

snapshots.
Such a stable subgraph isomorphism search problem can

be used for many temporal graph analysis applications. For
example, in a collaboration network, a stable k-clique sub-
graph represents that the k authors have co-authored many
papers multiple times, indicating a long-term collaboration
among them. A stable star-like structure may reveal a stable
cooperative team in multi-discipline areas that have co-
authored many papers over time. Finding these stable struc-
tures may be helpful for identifying the team of experts to
conduct a particular research project. In an email communi-
cation network between staff in a company, a stable star
structure may reveal the staff’s implicit leadership, as a
leader may often send tasks to the other staff and the staff
may report their work to the leader frequently. In a financial
transaction network, a stable small-circle structure may rep-
resent a kind of financial fraud behavior [6]. Finding such
stable small-circle isomorphisms in a temporal financial
transaction network can help detect financial fraud behav-
iors. In addition, searching stable subgraph isomorphisms
in temporal graphs can find stable communities and reveal
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some implicit features of a network which may be useful for
understanding the structure and function of a network.

The stable subgraph isomorphism search problem is NP-
hard because when u ¼ 1, it degenerates a problem of find-
ing subgraph isomorphisms in every snapshot of G, which
is NP-hard [7], [8]. To solve the stable subgraph isomor-
phism search problem, a straightforward solution is to use a
traditional subgraph isomorphism query algorithm, such as
the Ullmann algorithm [9], to compute all subgraph isomor-
phisms for a query graph in each snapshot, and then pick
the stable subgraph isomorphisms among all snapshots.
Clearly, such a solution is very costly, because the subgraph
isomorphism search is a NP-hard problem. To efficiently
compute the stable subgraph isomorphisms in a temporal
graph, we develop a new pruning-based search algorithm
equipped with several pruning tricks based on the temporal
stability constraint, which can significantly reduce the
unpromising intermediate results during the search proce-
dure. To further improve the efficiency, we propose a novel
index structure, called BCCIndex, based on a bi-connected
component (BCC) decomposition technique which can effi-
ciently support stable subgraph isomorphism query. Armed
with the BCCIndex and a carefully-designed tree join tech-
nique, we develop an efficient query processing algorithm
to find stable subgraph isomorphisms. To the best of our
knowledge, our work is the first to apply the BCC indexing
technique to solve the stable subgraph isomorphism search
problem in temporal networks. In summary, we make the
following contributions.

An Pruning Based Algorithm. We propose an pruning-based
stable subgraph isomorphism search algorithm PruneSearch

integrated with several pruning techniques to avoid explor-
ing the unpromising intermediate results during the search
procedure. We also present a parallel version of PruneSearch
to improve the scalability of the algorithm.

An Index-Based Algorithm. We devise an index structure,
namely, BCCIndex, based on a BCC decomposition tech-
nique. Equipped with the BCCIndex, we propose an index-
based solution, i.e., BCCIndexSearch, to efficiently find stable
subgraph isomorphisms based on a newly-developed tree
join technique. We also propose a parallel BCCIndex con-
struction algorithm and a parallel BCCIndexSearch algorithm
to further improve the scalability.

Extensive Experiments. We conduct comprehensive experi-
ments to evaluate the efficiency of the proposed algorithms
using four large real-world temporal graphs. The results
show that 1) BCCIndexSearch is very efficient which is
around 1-3 orders of magnitude faster than PruneSearch; 2)
the BCCIndex can be constructed in a reasonable time for
large temporal graphs and also the size of BCCIndex is often
not very large; 3) both the parallel PruneSearch and parallel
BCCIndexSearch can achieve very high speedup ratios. In
addition, we also conduct a case study on a collaboration
network DBLP. The results show that our solutions can
indeed find meaningful and stable research teams in DBLP.

Remark. Note that given a graph G ¼ ðV;EÞ and a query
graph Q ¼ ðVq; EqÞ, there are two concepts of subgraph iso-
morphism in the studies of graph analysis. The first is
defined as an injective function M : Vq ! V such that
8ðui; ujÞ 2 Eq; ðMðuiÞ;MðujÞÞ 2 E, which is often called sub-
graph monomorphism. The second is an injective function

M : Vq ! V satisfying that 8ðui; ujÞ 2 Eq; ðMðuiÞ;MðujÞÞ 2
E and 8ðui; ujÞ =2 Eq; ðMðuiÞ;MðujÞÞ =2 E, which is also
known as induced subgraph isomorphism. In this paper,
we focus on the definition of the former, i.e., subgraph
monomorphism, and also use “subgraph isomorphism” to
represent “subgraph monomorphism” in the following.

Organization. We introduce some important notations
and formulate our problem in Section 2. The pruning-based
search framework is presented in Section 3. Section 4
presents the index structure and the index construction
method. The index-based query processing algorithm is
proposed in Section 5. Section 6 reports the experimental
results. We survey the related work in Section 7 and con-
clude this work in Section 8.

2 PRELIMINARIES

Given an undirected and unlabeled temporal graph G ¼
ðV; EÞ with n ¼ jVj vertices and m ¼ jEj temporal edges.
Each temporal edge e 2 E is a triplet ðu; v; tÞ, where u; v are
vertices in V, and t is the interaction time between u and v.
We assume that t is an integer, because the timestamp is an
integer in practice. The de-temporal graph of G is defined as
G ¼ ðV;EÞ by discarding all timestamps on the temporal
edges and condensing the multiple edges between any two
vertices into a single edge. Clearly, we have V ¼ V and E ¼
fðu; vÞjðu; v; tÞ 2 Eg. We denote the neighbors of a vertex u
by NuðGÞ, i.e., NuðGÞ ¼ fv 2 V jðu; vÞ 2 Eg, and the degree
of u by degGðuÞ ¼ jNuðGÞj. Given a subset S � V , the sub-
graph of G induced by S is defined as GS ¼ ðVS; ESÞ where
VS ¼ S and ES ¼ fðu; vÞju; v 2 S; ðu; vÞ 2 Eg and we denote
as GS � G. We omit the symbol G in the above notations
when the context is clear.

Given a temporal graph G ¼ ðV; EÞ, we can extract a
series of snapshots based on the timestamps. Considering an
arithmetic time sequence ft0; t1; t2; :::; tTg satisfying that
ðti � ti�1Þ is a constant for each integer i > 0, the i-th snap-
shot of G is a de-temporal graph Gi ¼ ðV;EiÞ where Ei is a
set of edges that are extracted from E in the time interval
ðti�1; ti� and V remains the same in general. Let T be the
number of snapshots of G and we have T � m. Denote by
GT the set of all snapshots of G based on the time interval. In
the experiments, we set ðti � ti�1Þ to a default value of 1
month/year which means that every snapshot contains all
the temporal edges in a 1-month/year length sliding win-
dow. Fig. 1 illustrates a temporal graph G with 77 temporal
edges and T ¼ 6. The de-temporal graph of G is shown in
Figs. 1b. Figs. 1c, 1d, 1e, 1f, 1g, and 1h are all the six snap-
shots from G1 to G6 of G, respectively.

Before introducing the definition of stable subgraph
embedding, we give the concepts of subgraph isomorphism
and subgraph isomorphism embedding as follows.

Definition 1 (Subgraph isomorphism). Given a query graph
q ¼ ðVq; EqÞ, a data graph g ¼ ðVg; EgÞ, q is subgraph iso-
morphic to g if and only if there exists an injective function
M : Vq ! Vg such that 8ðui; ujÞ 2 Eq; ðMðuiÞ;MðujÞÞ 2 Eg.
We call g a subgraph isomorphism of q and denote by q ’ g.

Definition 2 (Subgraph isomorphism embedding). Given a
query graph q ¼ ðVq; EqÞ and its subgraph isomorphism graph
g ¼ ðVg; EgÞ, a subgraph isomorphism embedding is an
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injective mapping M : Vq ! Vg. We use gM to represent the
subgraph isomorphism graph specified by the mappingM.

Example 1. Consider a graph G in Fig. 1b and a query
graph q1 in Fig. 2a. In G, the 4-clique C induced by the
vertex set Vg ¼ fv2; v3; v4; v5g is a subgraph isomorphism
of q1. The injective mapping Mðu1 ! v2; u2 ! v3; u3 !
v4; u4 ! v5Þ is a subgraph isomorphism embedding.
And the mapping M 0ðu1 ! v5; u2 ! v4; u3 ! v3; u4 ! v2Þ
is also a subgraph isomorphism embedding. Clearly,
there are 24 subgraph isomorphism embeddings in the
4-clique C.

Below, we introduce the concepts of temporal subgraph
embedding and stable value, which are essential to define a
stable subgraph embedding.

Definition 3. (Temporal subgraph embedding) Given a temporal
graph G ¼ ðV; EÞ and a query graph q ¼ ðVq; EqÞ, for any snap-
shot Gi ¼ ðVi; EiÞ 2 G, if an injective function M : Vq ! Vi

satisfies 8ðui; ujÞ 2 Eq; ðMðuiÞ;MðujÞÞ 2 Ei, we say that M
is a temporal subgraph embedding of q. We use GiðqÞ to
represent the collection of subgraph isomorphism graphs based
on all temporal subgraph embeddings in a snapshot Gi, i.e.,
GiðqÞ ¼ fgM jq ’ gM � Gig.

Example 2. Consider a temporal graph G in Fig. 1a and a
query graph q1 in Fig. 2a. In the snapshot G2 of G, the
injective mapping Mðu1 ! v2; u2 ! v3; u3 ! v4; u4 ! v5Þ
is a temporal subgraph embedding. Moreover, we can see
that in the snapshot G3, the mappings: M1ðu1 ! v2; u2 !
v3; u3 ! v5; u4 ! v6Þ, M2ðu1 ! v3; u2 ! v4; u3 ! v5; u4 !
v6Þ, M3ðu1 ! v7; u2 ! v9; u3 ! v10; u4 ! v11Þ are also tem-
poral subgraph embeddings.

Definition 4. (Stable value) Given a temporal graph G ¼ ðV; EÞ,
a query graph q ¼ ðVq; EqÞ and a temporal subgraph embedding

M of q, the stable value ofM is defined as the number of snap-
shots that M appears in, i.e., svðMÞ ¼ jfGtjq ’ gM � Gt;
1 � t � Tgj.

Stable value can measure the degree of stability of a tem-
poral subgraph embedding. A larger stable value sv repre-
sents that the vertices in gM maintain the connections over
sv times, which indicates a long-term stable structure. With
the stable value, a stable subgraph embedding is defined as
follows.

Definition 5. (Stable subgraph embedding) Given a temporal
graph G ¼ ðV; EÞ, a query graph q ¼ ðVq; EqÞ and an integer u
as stability threshold, a mapping M is a u-stable subgraph
embedding when it is a temporal subgraph embedding of q in
at least u snapshots, i.e., svðMÞ � u.

Example 3. Consider a temporal graph G in Fig. 1 and a
query graph q1 in Fig. 2a. Suppose that the stability
threshold u equals 3. The temporal subgraph embedding
M1ðu1 ! v2; u2 ! v3; u3 ! v4; u4 ! v5Þ is only contained
in G2 among all six snapshots of G. Thus we have
svðM1Þ ¼ 1. While the mapping M2ðu1 ! v7; u2 !
v9; u3 ! v10; u4 ! v11Þ appears in four snapshots, namely,
G3, G4, G5 and G6, thus svðM2Þ equals 4. By u ¼ 3, we can
clearly see that M2 is a 3-stable subgraph embedding of q
butM1 is not due to svðM1Þ ¼ 1 < 3.

Based on the above definitions, we formulate the prob-
lem of seeking stable subgraph embeddings in temporal
networks as follows.

Problem Formulation. Given a temporal graph G ¼ ðV; EÞ, a
query graph q ¼ ðVq; EqÞ and an integer u, our goal is to find
all stable subgraph embeddings of q in G on the basis of the
stability threshold u.

The following example illustrates the definition of our
problem.

Example 4. Reconsider the temporal graph G in Fig. 1 and a
query graph q1 in Fig. 2a. There are six subgraph isomor-
phisms of q1 in all snapshots of G which are induced by
V1 ¼ fv2; v3; v4; v5g, V2 ¼ fv2; v3; v4; v6g, V3 ¼ fv2; v3; v5;
v6g, V4 ¼ fv2; v4; v5; v6g, V5 ¼ fv3; v4; v5; v6g and V6 ¼
fv7; v9; v10; v11g, respectively. Each subgraph isomorphism
can generate 24 temporal subgraph embeddings with the
same stable values. The stable values of temporal sub-
graph embeddings corresponding to the six subgraph iso-
morphisms are 1, 1, 3, 1, 2 and 4, respectively. Suppose
that the stability threshold u ¼ 3, the answers of stable
subgraph embedding search problem are the mappings
generated by the subgraphs induced by V3 and V6. When
u equals 5, there is no 5-stable subgraph embedding as
none of the 6 � 24 temporal subgraph embeddings satisfy-
ing svð�Þ � 5. Consider q2 in Fig. 2b as a query graph.

Fig. 1. Basic concepts of a temporal graph G.

Fig. 2. The examples of query graphs.
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Then, there are 7 � 6 2-stable subgraph embeddings of q2
in G whose stable values are 2. Further, when u > 2, the
result of stable subgraph embedding search is empty.

Clearly, for a query graph q, all subgraph isomorphism
embeddings can be easily revealed by a subgraph isomor-
phism g (i.e., q ’ g). Thus, in the remaining of this paper, we
use the term “isomorphism” to refer to “embedding” for
simplicity when there is no ambiguity, and we may use
embedding, match, and mapping interchangeably.

Remark. Note that our stable subgraph isomorphism
search problem is different from the classic frequent sub-
graph mining problem. A frequent subgraph is a pattern
that appears multiple times on a large graph [10], [11], [12],
[13], [14] or in a set of graphs [15], [16], [17], [18]. In particu-
lar, a temporal motif is a frequent subgraph with the tempo-
ral information of edges. A stable subgraph isomorphism is
an embedding of a given query graph that appears in multi-
ple snapshots over time. The key difference between the fre-
quent subgraph mining problem and our stable subgraph
search problem is that the former does not require a query
graph as an input, while the latter is based on a query
graph. Due to this key difference, existing solutions for the
problem of frequent subgraph mining cannot be directly
applied to solve our problem.

Challenges.We first discuss the hardness of the stable sub-
graph isomorphism search problem. Consider a special
case: u ¼ 1. Clearly, the problem is equivalent to finding
subgraph isomorphism in each snapshot of G which is NP-
hard. Thus, finding all isomorphisms of a query graph in at
least u snapshots is also NP-hard.

To solve the stable subgraph isomorphism search prob-
lem in temporal graphs, a straightforward solution is to
compute the stable value for each temporal subgraph iso-
morphism in all snapshots and then pick the subgraphs
whose stable values are no less than the stability threshold u

as the answers. Such an approach, however, is very costly
for large temporal graphs. This is because the solution
needs to explore all subgraph isomorphisms in all snap-
shots of G, which is often intractable for large temporal
graphs due to its NP-hard. To improve the efficiency, a
potential solution is to apply temporal information of the
edges to prune the unpromising intermediate results that
definitely cannot obtain a stable subgraph isomorphism.
The challenge of the problem is how can we apply the tem-
poral information to speed up the stable subgraph isomor-
phism search procedure.

In addition, searching subgraph isomorphisms is often
not very efficient for large graphs, because it typically needs
to perform a backtracking search procedure on the large
data graph to identify all subgraph isomorphisms. A natu-
ral question is that can we design an index-based solution
to efficiently support the stable subgraph isomorphism
query? Clearly, we cannot pre-compute all the stable sub-
graph isomorphisms for all possible small-sized subgraph
queries (in practice, the size of the query subgraph is often
smaller than 10). Thus, the challenge to answer this question
is how can we maintain some stable subgraph isomorphism
results to efficiently support all possible subgraph queries.

To tackle the above challenges, we propose a pruning-
based search algorithm which can efficiently prune the

unpromising intermediate results using the temporal
information, as well as an index-based algorithm with a
bi-connected component decomposition technique which
can efficiently support stable subgraph isomorphism
search.

3 A PRUNING SEARCH ALGORITHM

This section proposes a pruning-based stable subgraph iso-
morphism search algorithm, called PruneSearch, to solve our
problem. The PruneSearch extends the classic Ullmann algo-
rithm to handle temporal graphs which also integrates sev-
eral pruning techniques to prune unpromising candidate
matches. Below, we first introduce the pruning rules, fol-
lowed by the PruneSearch algorithm.

3.1 The Pruning Rules

Let ui 2 Vq be a query vertex and vi 2 V be a data vertex.
CðuiÞ denotes the candidate set of ui which includes the
data vertices that may form a mapping ui ! vi in a stable
subgraph isomorphism. Let T ðvi; vjÞ, also known as active
time, be the collection of snapshots derived by the temporal
edges in G whose end-vertices are vi and vj, i.e., T ðvi; vjÞ ¼
ftjðvi; vjÞ 2 Et; 1 � t � Tg. Denote by g ¼ ðVg; EgÞ an arbi-
trary stable subgraph isomorphism of q in G. Below, we give
four observations based on which the search algorithm can
prune the intermediate results that definitely cannot form a
stable subgraph isomorphism.

Observation 1. For an edge ðvi; vjÞ 2 G, if jfGtjðvi; vjÞ 2
Et; 1 � t � Tgj < u holds, then ðvi; vjÞ is not included in g,
i.e., ðvi; vjÞ =2 Eg.

Observation 2. Degree reduction: for a data vertex vi in G, if
jfGtjdegGtðviÞ � degqðuiÞ; 1 � t � Tgj < u holds, then
vi =2 CðuiÞ.

Observation 3. Failed neighbors reduction: for a data vertex vi
in G, let Nvi ¼ NviðGÞ. We iterative update the sets: TuiðviÞ  
ftjjNviðGtÞ \Nvi j � degqðuiÞ; t 2 Tg and Nvi  fvjjjftjvj 2
NviðGtÞ; t 2 Tg \ TuiðviÞj � ug until Nvi does not changes. If
TuiðviÞ � u holds, we say that vi is a candidate of ui and
TuiðviÞ is the active time of vi.

Observation 4. For a data vertex vi 2 CðuiÞ, vi should be
removed from CðuiÞ if one of the following conditions is
satisfied:

1) Neighbor restriction: 9uj 2 NuiðqÞ; NviðGÞ \ CðujÞ ¼
;.

2) Time restriction: 8vj 2 NviðGÞ \ CðujÞ; jTuiðviÞ \
TujðvjÞ \ T ðvi; vjÞj < u.

3.2 The Proposed Algorithm

Equipped with the above pruning rules, we propose
PruneSearch to solve the stable subgraph isomorphism
search problem. The main idea of our PruneSearch is to find
the results by expanding partial solutions or abandoning
them when they definitely cannot form full answers. The
algorithm can reduce the computing of unpromising inter-
mediate matches during the backtracking procedure, thus
improving the efficiency significantly.
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Algorithm 1. PruneSearch

Input: G ¼ ðV; EÞ, a query q ¼ ðVq; EqÞ, an integer u.
Output: The stable subgraph isomorphism set S.
1 S  ;; Ĝ ¼ ðV̂ ; ÊÞ  G;
2 Construct the de-temporal graph G ¼ ðV;EÞ of G;
3 for ðvi; vjÞ 2 E do
4 T ðvi; vjÞ ¼ ftjðvi; vjÞ 2 Et; 1 � t � Tg;
5 wðvi;vjÞ ¼ jT ðvi; vjÞj;
6 if wðvi;vjÞ < u then Delete all edges ðvi; vj; tÞ from Ĝ;
7 if degĜðviÞ ¼ 0 then Delete vi from Ĝ;
8 if degĜðvjÞ ¼ 0 then Delete vj from Ĝ;
9 for ui 2 Vq do
10 CðuiÞ  ;;
11 for vi 2 V̂ do
12 TuiðviÞ  ;;Nvi  NviðGÞ; N̂vi  ;;
13 flagðviÞ  true;
14 while Nvi 6¼ N̂vi do
15 N̂vi  Nvi ;
16 TuiðviÞ  ftjjNviðGtÞ \Nvi j � degqðuiÞ; t 2 Tg;
17 Nvi  fvjjjftjvj 2 NviðGtÞ; t 2 Tg \ Tui ðviÞj � ug;
18 if jTuiðviÞj � u then
19 Insert ðvi; Tui ðviÞ; flagðviÞÞ into CðuiÞ;
20 break;
21 if jCðuiÞj ¼ 0 then return S;
22 M  ;; Tc  ftj1 � t � Tg;
23 SubGraphSearchðq; Ĝ;M; TcÞ;
24 return S;

The pseudo-code of PruneSearch is shown in Algorithm 1.
It first constructs the de-temporal graph G and processes G
by removing the edges that appear in less than u snapshots
as well as isolated vertices (lines 2-8). Such edges and verti-
ces are not contained in a stable subgraph isomorphismwith
threshold u according to Observation 1. The algorithm then
calculates candidate sets for query vertices in q by applying
degree reduction (Observation 2) and failed neighbors
reduction (Observation 3); we call this process FirstFilter

(lines 9-21). In FirstFilter, PruneSearch determines whether vi is
a candidate of ui by iteratively updating the sets: TuiðviÞ and
Nvi (lines 14-17). Here a set N̂vi is used to check whether Nvi

was no longer changed. When the loop ends, if jTuiðviÞj � u

holds, that means vi is a candidate of ui. PruneSearch adds vi
into CðuiÞ with a variable flagðviÞ ¼ true and active time
TuiðviÞ (lines 18-20). The variable flagðviÞ is used to indicate
whether the candidate vi is valid. If vi can be mapped to a
query vertex ui, we set flagðviÞ to true inCðuiÞ, otherwise it is
false. After calculating the initial CðuiÞ, if it is empty, that
means the query vertex ui cannot bemapped to any data ver-
tex in G, thus the algorithm terminates (line 21). On the other
hand, PruneSearch invokes the SubGraphSearch procedure to
iteratively map vertices one by one from q to Ĝwith the can-
didate sets for seeking the stable subgraph isomorphisms on
the basis of u (line 23). Note that during the backtracking pro-
cedure, the search is based on partial matches, thus some
candidates in CðuiÞ will fail and SubGraphSearch will update
the status of flag for them (line 18, lines 25-28, line 30 in Algo-
rithm 2). Finally, it returns S as the answers.

The workflow of SubGraphSearch is outlined in Algo-
rithm 2. M is employed to maintain the mapping informa-
tion ui ! vi. The procedure prunes candidates for query
vertices by identifying whether they satisfy both neighbor

restriction and time restriction (Observation 4); we call this
process SecondFilter (lines 3-21). Specifically, for each uj 2
NuiðqÞ, a variable disjoint, initialized to true, is used to indi-
cate that no vj 2 NviðGÞ can be a candidate of uj. The proce-
dure calculates tempt by considering both the time T
obtained in the last iteration and the active times of vi, vj, and
ðvi; vjÞ (lines 10-11). If tempt � u holds, uj can be mapped to
vj under ui ! vi and M; thus, the SubGraphSearch sets
disjoint to false and checks the next neighbor of ui (line 13).
On the other hand, no data vertex is both a neighbor of vi and
a candidate of uj; thus, vi is not a candidate of ui and the pro-
cedure updates CðuiÞ based on the round of iteration
(lines 14-18). During the SecondFilter, once any candidate set
CðuiÞ is empty, the procedure terminates (line 21). After
pruning candidates, the SubGraphSearch picks an unmapped
vertex us with the smallest size of candidate-set as the
selected vertex, and then performs the next iteration for each
candidate of us (lines 23-30). Before executing the iteration,
SubGraphSearch re-computes the active time Tc and updates
candidate sets by marking the indicator flag based on the
new mapping of us (lines 24-28). When the inner
SubGraphSearch completes, the procedure needs to recover
the candidates’ status (line 30). Since SubGraphSearch itera-
tively maps vertices one by one from q to Ĝ, it adds M into
the result set S when jMj ¼ jVqj holds, thus a u-stable sub-
graph isomorphism of q in G is discovered (line 1).

Algorithm 2. SubGraphSearch ðq; Ĝ;M; T Þ
1 if jMj ¼ jVqj then S  S [M;
2 else
3 forui 2 Vq do
4 cntui  0;
5 for ðvi; TuiðviÞ; flagðviÞÞ 2 CðuiÞ and flagðviÞ ¼ true do
6 for uj 2 NuiðqÞ do
7 disjoint true;
8 for vj 2 NviðĜÞ do
9 if ðvj; TujðvjÞ; flagðvjÞÞ 2 CðujÞ and flagðvjÞ ¼ true

then
10 tempt  TuiðviÞ \ TujðvjÞ \ T ðvi; vjÞ;
11 tempt  tempt \ T ;
12 if jtemptj � u then
13 disjoint false; break;
14 if disjoint ¼ true then
15 ifM ¼ ; then
16 Delete ðvi; TuiðviÞ; flagðviÞÞ from CðuiÞ;
17 else
18 ðvi; TuiðviÞ; flagðviÞÞ  ðvi; TuiðviÞ; falseÞ;
19 for ðvi; TuiðviÞ; flagðviÞÞ 2 CðuiÞ do
20 if flagðviÞ ¼ true then cntui  cntui þ 1;
21 if cntui ¼ 0 then return;
22 U ¼ fuijui 2Mg; us ¼ argminui2ðVqnUÞcntui ;
23 for ðvi; TuiðviÞ; flagðviÞÞ 2 CðusÞ and flagðviÞ ¼ true do
24 M:insertðus; viÞ; Tc ¼ T \ TuiðviÞ;
25 for ui 2 Vqnus do
26 ðvi; TuiðviÞ; flagðviÞ  ðvi; TuiðviÞ; falseÞ;
27 for vg 2 V nvi do
28 ðvg; TusðvgÞ; flagðvgÞ  ðvg; TusðvgÞ; falseÞ;
29 SubGraphSearchðq; Ĝ;M; TcÞ;
30 Perform the inverse operation of lines 25-28 for all

CðuiÞs;
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Remark. In PruneSearch, we can apply the symmetry-break-
ing trick to handle the query graphs with automorphismmap-
ping as described in [19], to make a stable subgraph
isomorphism search only once. When finding an answer, the
other matches with different mapping relationships can be
easily revealed by the automorphisms of q.

3.3 The Parallel PruneSearch Algorithm

To further improve the scalability, we develop a parallel
version of the pruning-based search algorithm, called
PPruneSearch. Specifically, in lines 9-22 of Algorithm 1, cal-
culating the candidates in FirstFilter can be performed inde-
pendently, thus we can process the query vertices in
parallel in this procedure. In addition, in lines 23-30 of Algo-
rithm 2, when SubGraphSearch is first called, i.e., M ¼ ;, it
picks the first query vertex uf and generates new mappings
with candidates to perform the deeper iterations. For each
candidate vi 2 CðufÞ, SubGraphSearch finds u-stable sub-
graph isomorphisms based on the mapping uf ! vi, thus
we can process all vi’s in parallel as all of them are indepen-
dent. We will show that the parallel algorithm PPruneSearch

can achieve a very good speedup ratio on real-life graphs in
the experiments.

4 THE BCCIndex STRUCTURE

In this section, we propose an index structure, called
BCCIndex, to efficiently support the stable subgraph isomor-
phism query. Below, we first introduce the BCCIndex struc-
ture, followed by the index construction algorithms.

4.1 The Proposed BCCIndex

Before introducing the index structure, we give the defini-
tion of Bi-Connected Component (BCC) of a graph [20], [21],
[22]. Consider a graph G and a subgraph g, we say that g is
a BCC if 1) the remaining graph is still connected after
removing any 1 edge from g and 2) any super-graph in G of
g cannot satisfy 1). Any graph can be decomposed into sev-
eral BCCs and isolated vertices [20]. We refer to such a
decomposition as BCCDecompose. For instance, by perform-
ing BCCDecompose on the graph in Fig. 3a, we can obtain
four BCCs induced by the vertices colored red, blue, green,
and gray, respectively; the vertices u7 and u11 colored black
are isolated.

Based on the BCCDecompose, we develop an index struc-
ture, called BCCIndex, which maintains all the stable sub-
graph embeddings for small-size BCCs. In particular,

BCCIndex maintains a sorted list of the stable subgraph iso-
morphisms for all index-query graphs. Here, the index-
query graphs are all BCC-graphs with size no larger than 5
as illustrated in Fig. 4. Clearly, there are 15 index-query
graphs in total and we denote the collection of them as GIQ.
In many practical applications, the size of the query graph
is often no larger than 10. By BCCDecompose, the query
graph can be decomposed into very small subgraphs. Thus,
it is sufficient to store all the isomorphism results of such
small subgraphs in GIQ as an index and design an efficient
index-based query algorithm to handle different query
graphs. In addition, we focus mainly on the stable subgraph
isomorphism search problem in temporal graphs. An iso-
morphism is not considered as a stable isomorphism if it
appears in only one snapshot. If we want to find an isomor-
phism that appears in at least one snapshot, the time con-
straint will fail; and this problem degenerates to a problem
of finding all subgraph isomorphisms in each snapshot.
Therefore, we maintain the stable subgraph matches with
stable values no less than 2 in our BCCIndex structure.

More specifically, the BCCIndex structure, denoted by EI,
contains 15 sorted lists corresponding to the BCC-graphs in
Fig. 4. For each graph IQi 2 GIQ, we search stable subgraph
isomorphisms based on the stability threshold u ¼ 2. For a
temporal isomorphism mIQi

, we maintain the snapshots
T ðmIQi

Þ that it appears in and calculate svðmIQi
Þ. Then, a

sorted list EIðIQiÞ can be obtained by sorting all temporal
isomorphisms in a non-increasing order of their stable val-
ues. The goal that we maintain the snapshots is to extend
the partial solutions easily in our query processing algo-
rithm to find the complete stable subgraph isomorphisms.
Note that if the stable value svðmIQi

Þ equals 1, then mIQi
is

not added into EIðIQiÞ. The following example illustrates
the BCCIndex structure.

Example 5. Consider a temporal graph G in Fig. 1. The
index structure of G for IQ0, IQ3 and IQ12 is shown in
Fig. 5. Due to space limitations, we only illustrate one
instance of the automorphisms for query graphs. Clearly,
the BCCIndex structure EIðIQiÞ maintains the stable sub-
graph isomorphisms whose stable values are no less than
2 and sorts them in a non-increasing order based on the
stable values. For instance, the triangle induced by
ðv1; v2; v4Þ only appears in G1, so it is not included in
EIðIQ0Þ. The match containing v6; v7; v8 exists in

Fig. 3. Illustration of BCCDecompose.

Fig. 4. The index-query graph setGIQ.
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G2; G3; G4; G5 and G6, and its stable value equals 5 which
is the largest among all isomorphisms, thus it ranks first
in EIðIQ0Þ. Similarly, we can see that EIðIQ3Þ contains
three matches induced by fv7; v9; v10; v11g, fv2; v3; v5; v6g,
and fv4; v3; v5; v6g, respectively. It is easy to verify that
their stable values are equal to 4, 3, and 2, as illustrated in
Fig. 5b. The index EIðIQ12Þ is shown in Fig. 5c which con-
tains seven stable subgraph isomorphisms of IQ12 in G.

4.2 The BCCIndex Construction

A Sequential Implementation. We present the BCCIndexBuild

algorithm to construct the BCCIndex structure EI. The
pseudo-code of BCCIndexBuild is shown in Algorithm 3. For
each index-query graph IQi in GIQ, the BCCIndexBuild per-
forms PruneSearch to search stable subgraph isomorphisms
on the basis of the stability threshold u ¼ 2. When
PruneSearch finds a stable subgraph isomorphism M, it
pushes M with the snapshots, that it appears in, into the
sorted list EIðIQiÞ and then sorts these matches in EIðIQiÞ
in a non-increasing order of their stable values.

A Parallel Implementation. To improve the scalability, we
discuss the parallel methods for index construction. Specifi-
cally, in lines 2-6 of Algorithm 3, seeking all stable subgraph
isomorphisms for each index-graph IQi can be performed
independently by applying PruneSearch, thus we can pro-
cess these index-query graphs in parallel. On the other
hand, in line 4 of Algorithm 3, for each IQi 2 GIQ, we can
perform PPruneSearch (instead of PruneSearch) to calculate
stable subgraph isomorphisms for the first query vertex’s
candidates in parallel.

4.3 Discussions

To the best of our knowledge, the proposed BCCIndex is a
novel technique to solve the stable subgraph isomorphism
search problem in temporal graphs. Furthermore, we are the
first to apply the technique of bi-connected component
decomposition, i.e., BCCDecompose, to solve the subgraph iso-
morphism search problem. We do not use BCCIndex for tradi-
tional static subgraph isomorphism search based on the
following reasons. First, for the static labeled graphs, the types
of labeled bi-connected components grow exponentially with
the number of labels, because each vertex can be associated
with different labels. It is intractable to compute and store all
the subgraph isomorphism results for all labeled bi-connected
components. Second, for the unlabeled static graphs, although
the number of bi-connected components may not be very

large, the corresponding subgraph isomorphism results can
be exponentially large which typically cannot be stored as an
off-line index. However, for temporal graphs, when adding
the temporal constraint, the results of temporal subgraph iso-
morphism are often not very large which generally can be
stored in modern computers as an index (as confirmed in our
experiments). Therefore, we can apply the BCCIndex technique
to solve the stable subgraph isomorphism search problem on
temporal graphs.

Algorithm 3. BCCIndexBuild

Input: G ¼ ðV; EÞ, an index-query set GIQ.
Output The BCCIndex EI.

1 EI  ;;
2 for IQi 2 GIQ do
3 EIðIQiÞ  ;;
4 EIðIQiÞ  PruneSearchðG; IQi; 2Þ;
5 Sort all matches in EIðIQiÞ in a non-increasing order based

the stable values;
6 EI  EI [ EIðIQiÞ;
7 return EI;

5 THE INDEX-BASED SEARCH ALGORITHM

We propose an index-based query processing algorithm,
called BCCIndexSearch, to search stable subgraph isomor-
phisms for a query graph q. The main idea is to decompose
q into BCCs and isolated vertices, and then join the partial
solutions to obtain the results. Below, we first introduce an
algorithm, namely BCCMatch, to find the stable subgraph
isomorphisms for a BCC based on the BCCIndex, followed by
a heuristic join order and the BCCIndexSearch algorithm to
solve our problem.

5.1 The BCCMatch Algorithm

After decomposing the query graph q, there may exist some
BCCs with sizes larger than 5 which are not contained in our
BCCIndex. Hence, we propose an algorithm, called
BCCMatch, to handle this case. Specifically, in BCCMatch, all
BCCs are categorized into three types as follows. 1)
IndexIsoBCC: a BCC that is an isomorphism of any index-
query graph in GIQ; 2) StarIsoBCC: a BCC that can be decom-
posed into an IndexIsoBCC and a star; 3) GeneralBCC: the
remaining BCCs that do not satisfy 1) and 2). For instance,
the BCC illustrated in Fig. 2a is an isomorphism of IQ3, thus
it is an IndexIsoBCC. In Fig. 2c, the BCC colored blue is not
isomorphic to any index-query graph, but we can decom-
pose it into an IndexIsoBCC induced by fu2; u3; u4; u5; u6g
and a star pivoted at u1, thus it is a StarIsoBCC.

We propose an efficient algorithm to identify whether a
BCC is a StarIsoBCC as follows. Given a BCC graph Ge ¼
ðVe; EeÞ, we sort the vertices in Ve in a non-decreasing order
of the degree and then remove vertices following this order-
ing to decompose Ge. After removing the vertex u and the
edges ending with u, we check whether the remaining
graph is an IndexIsoBCC. If so, a decomposition strategy is
found, and thus Ge is a StarIsoBCC. Otherwise, we continue
to remove the next vertex and perform the above procedure
to determine a decomposition strategy. When all vertices in

Fig. 5. The BCCIndex structure of G in Fig. 1.
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Ge are removed and no strategy is obtained, Ge is recog-
nized as a GeneralBCC.

Algorithm 4. BCCMatch

Input : G ¼ ðV; EÞ, a query q ¼ ðVq; EqÞ, a BCC Ge ¼ ðVe; EeÞ,
the BCCIndex EI, an integer u.

Output: The stable subgraph isomorphism setMðGeÞ of Ge.
1 MðGeÞ  ;;
2 if 8IQq 2 GIQ;@IQq ’ Ge then
3 LetQ be a priority queue;
4 Q  ;; isdecom false;
5 for ui 2 Ve doQ:pushðui; degðuiÞÞ;
6 while Q 6¼ ; do
7 ður; dminÞ  Q:popðÞ; Let Ĝ ¼ ðV̂ ; ÊÞ be a graph;
8 V̂  Venfurg; Ê  Eenfðui; ujÞjui ¼ ur or uj ¼ urg;
9 if @IQq̂ 2 GIQ; IQq̂ ’ Ĝ then continue;
10 else
11 isdecom true; CðurÞ  V;
12 for m̂ 2 EIðIQq̂Þ do
13 if svðm̂Þ � u then
14 for ður; uiÞ 2 Ee do
15 vi  m̂:findðuiÞ;
16 CðurÞ  CðurÞ \NviðGÞ;
17 for vr 2 CðurÞ do
18 T̂  T ;
19 for ður; uiÞ 2 Ee do
20 vi  m̂:findðuiÞ;
21 T̂  TurðvrÞ \ T ðvi; vrÞ \ T ðm̂IQq̂

Þ;
22 if T̂ � u then
23 m m̂;m:insertður; vrÞ;
24 MðGeÞ  MðGeÞ [m;
25 else break;
26 break;
27 if isdecom ¼ false thenMðGeÞ  PruneSearch (G, Ge, u);
28 else
29 form 2 EIðIQqÞ do
30 if svðmÞ � u thenMðGeÞ  MðGeÞ [m;
31 else break;
32 returnMðGeÞ;

The BCCMatch algorithm is depicted in Algorithm 4. Spe-
cifically, it first identifies whether Ge is an IndexIsoBCC. If
there is an index-query graph IQq satisfying IQq ’ Ge,
BCCMatch outputs the solutions with stable values no less
than u in EIðIQqÞ as the results (lines 29-31). Otherwise, the
BCCMatch checks whether Ge is a StarIsoBCC. It pushes the
vertices in Ve into a priority queue Q following a non-
decreasing order based on their degrees, and then pops the
first element in Q at each loop to find a decomposition strat-
egy (lines 3-27). A variable isdecom, initialized as false, is
used to indicate whether Ge is a StarIsoBCC (line 4). When a
decomposition strategy is found, i.e., Ge can be decomposed
into an IndexIsoBCC Ĝ and a star pivoted on the removed
vertex ur, BCCMatch sets isdecom to true (line 11). We denote
the index-query graph as IQq̂ which is isomorphic to Ĝ.
Then, for each match with stable value no less than u in
EIðIQq̂Þ, BCCMatch extends it to obtain the complete solu-
tions of Ge (lines 12-25). If Q is empty and isdecom still
equals false, that means removing any vertex in Ge cannot
derive a decomposition, thus we recognize Ge as a
GeneralBCC. In this case, BCCMatch performs PruneSearch to
search stable isomorphisms for Ge on the basis of the

stability threshold u (line 27). Note that EIðIQqÞ and
EIðIQq̂Þ are sorted lists, BCCMatch terminates when the sta-
ble value of a solution is less than u for handling both
IndexIsoBCC (line 25) and StarIsoBCC (line 31). Finally, the set
MðGeÞ stores the stable subgraph isomorphisms of Ge.

Example 6. Consider a temporal graph G in Fig. 1 and a
query graph q3 in Fig. 2c. Suppose that u ¼ 2. We denote
the BCC induced by the vertices colored blue as Ge. Obvi-
ously, Ge is a StarIsoBCC because after removing u1, the
remaining graph is isomorphic to IQ12. For each solution
in EIðIQ12Þ shown in Fig. 5c, we extend it by considering
the star induced by the edges ðu1; u2Þ; ðu1; u3Þ to obtain
the matches of Ge. We can easily check that only the
match induced by fv7; v10; v8; v9; v11g can be extended by
adding the mapping u1 ! v6. With the automorphisms of
Ge, the results of Ge are ðv6; v7; v8; v9; v10; v11Þ and
ðv6; v7; v8; v11; v10; v9Þ.

Remark. For a query graph q, the BCCMatch algorithm pro-
cesses its decomposed-BCCs according to their types. When
the BCC is a IndexIsoBCC or StarIsoBCC, BCCMatch finds the
stable matches with the BCCIndex which maintains stable
results for index-query graphs with size no larger than 5.
While for the GeneralBCC, the BCCMatch algorithm needs to
perform PruneSearch to search stable isomorphisms on the
basis of the stability threshold u.

5.2 A Heuristic Join Order

As aforementioned, a graph G can be decomposed into sev-
eral BCCs and isolated vertices [20]. There is only one edge
to link one BCC/isolated vertex to another BCC/isolated
vertex in G. Thus, we can convert G into a tree, called
BCCTree, by treating each BCC or isolated vertex as a tree
node and adding the edges between them. A tree node n is
associated with a set, denoted as CNðnÞ, which represents
the corresponding vertices in G. If n is an isolated vertex,
we refer to n ¼ CNðnÞ. For brevity, Gn ¼ ðVn; EnÞ is used to
represent the subgraph induced by CNðnÞ. We connect the
tree nodes ni and nj if there is an edge between ui 2 CNðniÞ
and uj 2 CNðnjÞ in G, and the tree edge we label as ðui; ujÞ.
In this way, the BCCTree of G is created.

Example 7. Consider a graph q in Fig. 3a. Clearly, there are
four BCCs and two isolated vertices in q. Fig. 3b illustrates
the information of tree nodes. The BCCTree of q is shown
in Fig. 3c in which the tree node’s color is consistent with
the vertices’ color in CNðnÞ in Fig. 3a. We connect n1 and
n2 with the edge ðu5; u6Þ in BCCTree because vertex u5 2
CNðn1Þ and vertex u6 2 CNðn2Þ are linked in q.

Clearly, a join order can be derived by traversing
BCCTree from any tree node for our BCCIndexSearch algo-
rithm to merge the partial stable subgraph isomorphisms.
However, the pruning performance of BCCIndexSearch with
various join orders can be significantly different. Here we
design a heuristic join order for BCCIndexSearch by con-
structing a JoinTree. Let ci be a child of a tree node n and
depðciÞ be the depth of descendants of ci in BCCTree. For
two children c1; c2 of n, we define c1 	 c2 if: 1) jCNðc1Þj >
jCNðc2Þj; 2) jCNðc1Þj ¼ jCNðc2Þj and depðc1Þ > depðc2Þ. Fol-
lowing this order, the tree node with a larger size and
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deeper descendant has a higher priority to join which is
intuitively reasonable. Therefore, we create a root node nr

of the JoinTree with the highest rank based on the order. For
each tree node in JoinTree, we then iteratively add its chil-
dren into JoinTree according to the above order too. Finally,
the breadth-first traversal sequence of JoinTree is our join
order for merging the partial solutions in BCCIndexSearch.
Following such a heuristic join order can form a larger sub-
graph of q, thus avoiding the invalid merging operation
from small substructures.

Example 8. Consider a query graph q in Fig. 3a and its
BCCTree in Fig. 3c. Fig. 3d illustrates the JoinTree of q
obtained by our method. By performing breadth-first tra-
versal on the JoinTree, we can obtain a join order: n1 !
n2 ! n5 ! n4 ! n3 ! n6. Following this order, when
processing the children of node n2, that is, when deciding
on the next substructure to extend, the BCCIndexSearch

first merges n5 as it has the largest size among all chil-
dren. Clearly, such a join operation can derive a relatively
large partial solution.

5.3 The Query Processing Algorithm

Here we present the query processing algorithm, namely,
BCCIndexSearch. The main idea of BCCIndexSearch is to find
partial solutions for BCCs of q based on the BCCIndex and
then join them to derive the results. The pseudo-code of
BCCIndexSearch is outlined in Algorithm 5.

Like PruneSearch, the map structure M in BCCIndexSearch

maintains the mapping relationships for each stable sub-
graph isomorphism. Algorithm 5 works as follows. First, it
performs BCCDecompose to calculate BCCs of q and adds
BCCs into VB and isolated vertices into VI (lines 1-2). Based
on VB and VI , BCCIndexSearch constructs the BCCTree BT
and the JoinTree JT to obtain our heuristic join order Q by
breadth-first traversal of JT (lines 3-4). Then, The algorithm
pops the head element nr in Q (the root of JT ) as the initial
substructure. If nr is isolated, it means that the query
graph q is a tree, and we search u-stable subgraph isomor-
phisms by PruneSearch (line 6). On the other hand, the
BCCIndexSearch algorithm performs BCCMatch to find u-sta-
ble isomorphisms for BCCs based on our BCCIndex (lines 8-
9). Since nr is the initial substructure (nr ranks first),
BCCIndexSearch pops the head element nt in Q as the next
selected substructure and performs the TreeJoin procedure
to extend each u-stable isomorphism of nr (lines 10-12).
Finally, the result set S containing the u-stable subgraph iso-
morphism of q is returned.

TreeJoin finds the u-stable subgraph isomorphisms of q by
joining tree nodes based on the order in Q. It extends the
current match M by adding the current tree node nc’s solu-
tions that satisfy both neighbor and time restrictions (Obser-
vation 4). For a matchmc of tree node nc, we recognizemc is
not an active candidate of nc if: 1) multiple query vertices
are mapped to the same data vertex; 2) the number of snap-
shots that contain both mc andM is less than u. For eachmc,
TreeJoin identifies whether it is active. If no, the procedure
terminates. Otherwise, it performs extension depend on the
types of nc: isolated vertex extension (lines 18-24) and BCC

extension (lines 25-30). The difference between these two
extensions is the selection of candidate match mc. The

former chooses the neighbors of the matched vertex in M,
and the latter selects candidates based on the solutions
obtained by BCCMatch. When M contains all mappings of
query vertices in q, a u-stable subgraph isomorphism of q is
found, thus Algorithm 5 adds it into the result set S
(line 15).

Algorithm 5. BCCIndexSearch

Input: G ¼ ðV; EÞ, a query q ¼ ðVq; EqÞ, an integer u, the
BCCIndex EI.

Output: The stable subgraph isomorphism set S.
1 S  ;; VB  ;; VI  ;;
2 ðVB; VIÞ  BCCDecomposeðqÞ;
3 Construct BCCTree BT and JoinTree JT ;
4 Q  the join order by traversing JT with BFS;
5 nr  Q:popðÞ; Gr ¼ ðVr; ErÞ  Gnr ;
6 if Er ¼ then S  PruneSearch (G, q, u);
7 else
8 for Gei 2 VB do
9 MðGeiÞ  BCCMatchðG; q; Gei; EI; uÞ;
10 formr 2MðGrÞ do
11 T  T ðmrÞ;M  mr;
12 nt  Q:popðÞ; TreeJoinðq;G;M; T; ntÞ;
13 return S;
14 Procedure TreeJoinðq; G;M; T; ncÞ
15 if jMj ¼ jVqj then S  S [M;
16 else
17 Gc ¼ ðVc; EcÞ  Gnc ; V ðMÞ  fvijðui; viÞ 2Mg;
18 if Vc ¼ nc; Ec ¼ ; do
19 ui  ui; ðui; ncÞ 2 Eq;
20 vi  M:findðuiÞ;
21 for vj 2 NviðGÞ do
22 if fvjg \ V ðMÞ ¼ ; and T \ T ðvi; vjÞ � u then
23 T  T \ T ðvi; vjÞ;M:insertðuj; vjÞ;
24 nt  Q:popðÞ; TreeJoinðq; G;M; T; ntÞ;
25 else
26 formc 2MðGcÞ do
27 V ðmcÞ  fvijðui; viÞ 2 mcg;
28 if V ðmcÞ \ V ðMÞ ¼ ; and T \ T ðmcÞ � u then
29 T  T \ T ðmcÞ;M  mc;
30 nt  Q:popðÞ; TreeJoinðq; G;M; T; ntÞ;
31 end procedure

Remark. In the BCCIndexSearch algorithm, we also use the
symmetry-breaking trick to handle the query graphs with
automorphism mapping as described in [19], to make a sta-
ble subgraph isomorphism search only once.

5.4 The Parallel Query Algorithm

To improve the scalability, we introduce a parallel version of
the index-based search algorithm, called PBCCIndexSearch.
Specifically, in line 8 of Algorithm 5, the calculation of u-sta-
ble subgraph isomorphisms for BCCs is independent, thus
we can process BCCs in parallel. In addition, in lines 10-12 of
Algorithm 5, the BCCIndexSearch chooses the nr with the
highest rank as the initial substructure and performs TreeJoin
for each u-stable isomorphism of nr. Similar to the
PPruneSearch, this procedure can also be processed in paral-
lel. Our experiments show that such a simple parallel imple-
mentation can achieve a very good speedup ratio compared
to the sequential algorithm.
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6 EXPERIMENTS

In this section, we conduct extensive experiments to evalu-
ate the efficiency and effectiveness of the proposed algo-
rithms. For comparison, we implement an algorithm, called
BaselineSearch, as a baseline. BaselineSearch uses a parallel
Ullmann algorithm [9] to compute subgraph isomorphisms
for a query graph in the de-temporal graph, and then picks
the stable isomorphisms among them. We also implement
another baseline algorithm, called BaseSnapSearch, which
uses the VF2 algorithm [23] to compute subgraph isomor-
phisms for each snapshot and then selects the stable sub-
graph embeddings as the results. The BaseSnapSearch also
applies the pruning technique derived from Observation 1
before searching subgraph isomorphisms in each snapshot.
For our pruning-based stable subgraph isomorphism search
algorithm, we implement PruneSearch (Algorithm 1). We
implement the BCCIndexBuild algorithm (Algorithm 3) to con-
struct theBCCIndex, aswell as the index-based stable subgraph
isomorphism search algorithm BCCIndexSearch (Algorithm 5).
All algorithms are implemented in C++. In addition, we also
implement the parallel versions of PruneSearch, BCCIndexBuild
and BCCIndexSearch using OpenMP, namely, PPruneSearch,
PBCCIndexBuild and PBCCIndexSearch. All experiments are con-
ducted on a PC with 2.10GHz Intel(R) Xeon(R) Sliver 4110 (8-
core) CPU and 256GB memory running Red Hat 4.8.5-16. In
all experiments, both the temporal graph and the BCCIndex are
stored in themainmemory.We set the time limit to 7 days.

Datasets. We use four different types of real-world tem-
poral networks in the experiments. The detailed statistics of
the datasets are summarized in Table 1. Chess is a temporal
network in which each temporal edge represents two chess
players playing a game at time t. Lkml is a temporal commu-
nication network of the Linux kernel mailing list. Enron is an
email communication network between employees of Enron.
DBLP is a temporal collaboration network of authors in dblp
from 1940 to 2018. In Table 1, dmax and jT j denote the maxi-
mum number of temporal edges associated with a vertex
and the number of snapshots respectively. All these datasets
are downloaded from http://konect.uni-koblenz.de/.

Parameters. There are two input parameters in our algo-
rithms: the query graph q and the stability threshold u. The
input query graphs used in our experiments are summa-
rized in Fig. 6 which includes eight different types of sub-
graphs with 5-8 vertices. Since BCCIndex is constructed
based on the indexed-query graphs, the BCCIndexSearch

algorithm can calculate stable subgraph isomorphisms in
linear time if the query graph is one of the indexed-query
graphs. Therefore, we only use q1 as an example where the
query graph is an indexed-query graph; for other indexed-
query graphs, the results are consistent. For the hard cases,
in which the query graph is not an indexed-query graph,

we pick seven query graphs (namely, q2; q3; q4; q5; q6; q7; q8 in
Fig. 6) to evaluate the proposed algorithms. q2 is used to evalu-
ate the BCCIndexSearch algorithm for handling StarIsoBCC, and
q7 and q8 are designed for processing GeneralBCC. For the sub-
graph isomorphism problem, a slight difference between two
query graphs may result in significant query performance
changes. Thus, we select q4; q5 as the query graphs to exhibit
an “edge growing” pattern. Since different datasets have vari-
ous time scales, the stability threshold u is set within different
time intervals. Specifically, for Chess, u is selected from the
interval ½2; 7� with a default value 4. For Lkml and Enron, u is
chosen from the interval ½5; 15� with a default value 9.
For DBLP, u is selected from the interval ½5; 10� with a default
value 7.

6.1 Performance Studies

Comparison Among BaselineSearch, BaseSnapSearch and
PruneSearch. We evaluate BaselineSearch, BaseSnapSearch and
PruneSearch with varying parameters on different datasets.
Fig. 8 depicts the runtime of BaselineSearch, BaseSnapSearch
and PruneSearch with q1 and q3 on Chess. The results for other
query graphs on Chess are consistent. From Fig. 8, we can see
that the runtime of BaselineSearch increases very smoothly
with increasing k, while the runtime of BaseSnapSearch

and PruneSearch decreases as u increases for each query graph.
This is because BaselineSearch needs to compute all
subgraph isomorphisms to select the stable results, while
BaseSnapSearch and PruneSearch equipped with pruning tech-
niques can significantly reduce the search space of stable sub-
graph isomorphisms. Moreover, the running time of
PruneSearch is at least 3 orders of magnitude lower than that of
BaselineSearchwithin all parameter settings as expected. Com-
pared with BaseSnapSearch, the PruneSearch is faster for
smaller u (i.e., u ¼ 2; 3), and for relatively larger u, the runtime
of two algorithms is close. This is because the pruning effect of
Observation 1 can significantly reduce the scale of the graph
on the basis of a larger u. For example, for query graph q3 on
Chess, when u equals 2, PruneSearch takes 0.562 seconds to out-
put all stable subgraph isomorphisms, while BaselineSearch

and BaseSnapSearch consume 103,953 seconds and 760 sec-
onds. The runtime of PruneSearch is up to 5 orders of

TABLE 1
Datasets

Dataset n jEj jEj dmax jT j Time scale

Chess 7,301 55,899 63,689 263 100 month
Lkml 26,885 159,996 327,077 14,117 97 month
Enron 86,978 297,456 501,116 4,229 60 month
DBLP 1,729,816 8,546,306 12,007,380 5,980 78 year

Fig. 6. The query graphs in the experiments.

6414 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 6, JUNE 2023

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 02:52:39 UTC from IEEE Xplore.  Restrictions apply. 

http://konect.uni-koblenz.de/


magnitude and up to 2 orders of magnitude faster than that of
BaselineSearch and BaseSnapSearch, respectively. These results
confirm that the pruning-based algorithm PruneSearch is sub-
stantially faster than the BaselineSearch and BaseSnapSearch

algorithms in real-life temporal graphs, which is consistent
with our analysis in Section 2.

The Pruning Effect of FirstFilter and SecondFilter. In this
experiment, we evaluate the effect of FirstFilter and
SecondFilter in PruneSearch, and we refer to FirF and SecF for
brevity. We also employ two pruning tricks, i.e., degree
reduction and neighbor reduction (also known as DegF and
NbrF), in BaselineSearch for comparison. We evaluate these
pruning techniques before performing the recursive search
procedures. For each query vertex, the initial size of candi-
dates is the number of vertices and we denote as Init. Fig. 7
shows the size of candidates for vertex u2 in q6 with differ-
ent pruning techniques on all the datasets. The results with
varying u for other query vertices are consistent using dif-
ferent query graphs. As can be seen from Fig. 7, both FirF

and SecF can significantly prune the vertices that are defi-
nitely not included in a stable subgraph isomorphism com-
pared with DegF and NbrF. For example, in the case of
u ¼ 10 on DBLP, the number of candidates of u2 in q6 after
performing FirF is 874 vertices while the size of initial candi-
dates is 1,729,816. SecF can further reduce the size of Cðu2Þ
to 508. For DegF and NbrF, they only reduce the size of candi-
dates to 1,287,416 and 1,285,661 respectively. In addition,
the pruning effect of SecF (NbrF) is not obviously superior to
that of FirF (DegF). This is because SecF and NbrF work better
in the case of extending partial matches, i.e., the recursion
procedure of PruneSearch and BaselineSearch. These results
suggest that our pruning techniques can significantly prune
those vertices that are not included in a stable subgraph iso-
morphism. Again, these results confirm that PruneSearch is
significantly better than BaselineSearch, which are consistent
with our previous experiments.

Comparison Among BaseSnapSearch, PruneSearch and
BCCIndexSearch. Fig. 9 shows the running time of the three
algorithms with varying u for q1 
 q6 on different datasets.

As expected, the runtime of BaseSnapSearch, PruneSearch and
BCCIndexSearchdecreases as u increases for each query graph.
In general, the three algorithms achieve the maximum run-
time at the smallest u. This is because for a smaller stability
threshold u, there are large numbers of temporal subgraph
isomorphisms with stable values no less than u in the graph,
thus increasing computational costs. Moreover, we can also
see that the proposed PruneSearch and BCCIndexSearch algo-
rithms work well while the BaseSnapSearch algorithm
exceeds the time limit within most parameter settings. The
running time of PruneSearch is significantly lower than that of
BaseSnapSearch for a small u over all datasets. For a relatively
large u, PruneSearch is also faster than BaseSnapSearch expect
for some subgraphs on DBLP (i.e., u ¼ 9 or 10). This is because
the pruning technique derived fromObservation 1 can signif-
icantly reduce the scale of DBLP for a large u, which is indeed
the case for temporal collaboration networks. The runtime of
BCCIndexSearch is at least one order of magnitude and two
orders of magnitude lower than that of PruneSearch and
BaseSnapSearch within almost all parameter settings, respec-
tively. For example, for query graph q2 on DBLP, when u ¼ 5,
BCCIndexSearch takes 88 seconds to output all the stable sub-
graph isomorphisms,while PruneSearch consumes 159,964 sec-
onds and BaseSnapSearch cannot calculate the results within
the limited time. The runtime of BCCIndexSearch is at least
three orders of magnitude faster than that of PruneSearch and
BaseSnapSearch. We also evaluate PruneSearch and
BCCIndexSearch with q7 and q8. The results on DBLP are
depicted in Fig. 10 and similar results can also be found for
other datasets. As expected, the runtime of PruneSearch and
BCCIndexSearch is relatively close. This is because the q7 and q8
are GeneralBCC graphs, and BCCIndexSearch needs to perform
PruneSearch to search all stable subgraph isomorphisms. These
results demonstrate that the index-based solution
BCCIndexSearch is substantially faster than the PruneSearch and
BaseSnapSearch algorithm in real-life temporal graphs for
query graphswith small-size BCCs.

Evaluation of Parallel Query Processing Algorithms. In this
experiment, we evaluate the running time of PPruneSearch

and PBCCIndexSearch with varying the number of threads
t 2 f1; 2; 4; 8; 12; 16g. Fig. 11 illustrates the results of two
query graphs q3; q4 on Lkml and Enron. Similar results can also
be observed on the other datasets and using the other query
graphs. As can be seen from Fig. 11, the runtime of PBC

CIndexSearch is significantly lower than that of PPruneSearch.
For example, for query graph q4 on Enron, when t ¼ 16,
PBCCIndexSearch takes 5.9 seconds to output all stable sub-
graph isomorphisms, while PPruneSearch consumes 3,254.596
seconds. The running time of BCCIndexSearch is at least two
orders of magnitude faster than that of PPruneSearch.

Fig. 8. Running time of BaselineSearch, BaseSnapSearch and PruneSearch

on Chess.

Fig. 7. The pruning effect of FirstFilter and SecondFilter on different datasets.
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Moreover, we can see that both PPruneSearch and PBCC

IndexSearch can achieve near-linear speedup ratios over
these two datasets. For example, in Fig. 11d, when t ¼ 16 and
q ¼ q4, the speedup ratios of PPruneSearch and PBCCIndex

Search on Enron are roughly equal to 7.6 and 12, respectively.
These results indicate that our parallel stable subgraph iso-
morphism search algorithms can achieve very high speedup
ratios on real-life graphs.

Evaluation of the BCCIndex. In this experiment, we evalu-
ate the performance of our index construction algorithm.
Fig. 12a shows the size of BCCIndex and the graph size. As

can be seen, the BCCIndex sizes on all datasets are less than
2.5GB which can be easily stored in the main memory of a
modern computer. These results imply that the BCCIndex

size is not very large on real-life temporal graphs. In addi-
tion, Fig. 12b reports the BCCIndex construction time using
the sequential algorithm BCCIndexBuild. In Chess, Lkml, and
Enron, our index construction algorithm BCCIndexBuild is
very efficient which takes less than 3 hours to construct
BCCIndex. In DBLP, BCCIndexBuild is a little bit time-consum-
ing, but it is still able to construct the BCCIndex within 7
days (less than 600,000 seconds). Once the BCCIndex is

Fig. 9. Running time of PruneSearch and BCCIndexSearch on different datasets.
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established, it can be used to handle different query graphs
in practical applications. These results suggest that the pro-
posed index-based solution can work on large real-life tem-
poral graphs.

Evaluation of Parallel Index Construction. Here we evaluate
the speedup ratio of our parallel index construction algo-
rithm PBCCIndexBuild. To this end, we vary the number of
threads t from 1 to 16, and record the runtime of
PBCCIndexBuild to compute the speedup ratio for each data-
set. Fig. 13 reports the results on all datasets. As expected,
PBCCIndexBuild achieves near-linear speedup ratios over all
datasets. Moreover, we can observe that in the largest data-
set DBLP, the runtime of PBCCIndexBuild is around 14 times
lower than the sequential algorithm BCCIndexBuild. These
results indicate that our parallel index construction algo-
rithm is very efficient on real-life temporal graphs.

6.2 Case Study

In this experiment, we conduct case studies on DBLP and
HCWs, to evaluate the effectiveness of the proposed algo-
rithms. Aforementioned, DBLP is a temporal collaboration
network of authors in dblp from 1940 to 2018. HCWs is a

temporal network of contacts between patients and health-
care workers in a hospital which is downloaded from
http://www.sociopatterns.org/datasets.

Case Study on DBLP. In DBLP, we search the stable sub-
graph isomorphisms of a 5-clique to identify stable teams
with the highest stable scores. To this end, we set the stability
threshold u to 2 to find all teams in which the authors have
co-authored many papers for more than 2 years, and then
sort them in a non-increasing order based on their stable val-
ues. The runtime of PruneSearch and BCCIndexSearch is
111,298 seconds and 274 seconds respectively, which is con-
sistent with previous experiments. Fig. 14 shows the top-2
teams with the highest stable values. As shown in Fig. 14a,
all the five authors are interested in bioinformatics and work
on the Jackson Laboratory. This team contains the long-term
collaborators who have co-authored papers from 2000 to
2017, indicating that our algorithm can find stable relation-
ships in real-world applications. In Fig. 14b, we can also see
that the authors are the professors of the AtlantTIC research
center in Universidade de Vigo. Furthermore, they are the
key members of GSSI (Grupo de Servicios Para la Sociedad
de la Informaci�on) where the coordinator is Jos�e J. Pazos-
Arias. These authors are interested in semantic web, recom-
mender systems, crowdsourcing and crowd computing; and
they have co-authored many papers from 2004 to 2006, 2008
to 2011 and 2013 to 2016. Thus, this team contains long-term
collaborators which indicates that our algorithm can indeed
find stable communities in real-world applications.

We also search the stable subgraph isomorphisms in DBLP

using a “double star” structure as a query graph to reveal sta-
ble multi-discipline cooperations. Fig. 15 shows two results
as examples. As shown Fig. 15a, Jin and Guo play the roles as
“bridge”. From their homepages, Jin is mainly interested in
parallel and distributed architecture, data query processing,

Fig. 10. Running time of PruneSearch and BCCIndexSearch on DBLP.

Fig. 11. Running time of PPruneSearch and PBCCIndexSearch on different
datasets.

Fig. 12. Evaluation of the BCCIndex.

Fig. 13. Speedup ratio of PBCCIndexBuild on various datasets.

Fig. 14. Case study on DBLP with 5-clique query graph.
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computational complexity. Guo’s research interests include
big data, edge AI, mobile computing, and distributed sys-
tems, and others in Fig. 15a are interested in multi-discipline
areas as expected. For instance, Liao focuses onmemory com-
puting, runtime system, graph computing. Zou’s research
lies in data security, software vulnerability detection and net-
work attack and defense. Lu and Li mainly focus on wireless
networking, cloud computing, pervasive computing, and big
data. Zeng is interested in network function visualization,
software-defined networking, and edge computing. The
members maintain stable multi-discipline cooperative rela-
tionships who have co-authored papers from 2009 to 2015,
and 2017. Analogously, the authors in Fig. 15b have co-auth-
ored papers from 2004 to 2011 whose research covers multi-
ple areas. For example, Jennings and his neighbors are
mainly interested in machine learning, autonomous agents
and multi-agent systems. Wooldridge’s research lies in the
intersection of logic, computational complexity and game
theory. McBurney focuses on AI and computational finance,
including distributed ledgers, blockchain, smart contracts.
Van der Hoek is interested in logics for agent systems, data
mining and the semantic Web. Dunne’s research areas are
the complexity of dialogue and argumentation, coalitional
games, contract and resource allocation mechanisms. There-
fore, this team contains long-term and multiple-areas collab-
orators. The results indicate that our algorithm can indeed
find stable communities with multi-discipline cooperations
in real-world applications.

In addition, we extract two temporal subgraphs, namely,
DB and DM, from DBLP which contain the authors in DBLP

who have published at least one paper in the area of data-
base and data mining, respectively. In both DB and DM, We
search the stable subgraph isomorphisms of a 5-clique.
Figs. 16a and 16b show the top-1 teams with the highest sta-
ble values in DB and DM, respectively. From Fig. 16a, we can
observe that the top-1 team is a stable group formed by five
famous database researchers. Similarly, as shown in
Fig. 16b, the other authors in the top-1 group identified in
DM are stable collaborators of Professor Jiawei Han who
have co-authored many papers in the past few years. These
results further confirm that our algorithm can find stable
communities in real-world applications.

Case Study on HCWs. In HCWs, there are four identity
types, i.e., nurse (Nur), medic (Med), administrator (Adm) and
patient (Pat), and each individual is associated with an iden-
tity label. We search the stable isomorphisms of a triangle
with varying stability threshold u and observe the individ-
ual type of these results. Table 2 and Fig. 17 illustrate the
number of different types of vertices and the proportion of
different types of vertices in all stable triangles, respectively.
As can be seen, the number of patients involved in the stable
triangles decreases with an increasing u, while the nurses
are the majorities of the stable communities. Moreover, for a
large u, the proportion of medics in stable communities
decreases. This is because medics often do not need to main-
tain such a stable relationship with other people. In addi-
tion, the administrator engagement in stable communities is
less affected by u which is consistent with our intuition.
These results further confirm that our stable subgraph iso-
morphism technique can find stable communities and
reveal some implicit features of a network.

7 RELATED WORK

Subgraph Isomorphism.Our work is closely related to the sub-
graph isomorphism on static graphs, where the goal is to
find all embeddings of a query graph q in the data graph G.
Such a subgraph isomorphism is a classic NP-hard problem
[7], [8]. To solve this problem, Ullmann [9] proposed a back-
tracking algorithm that iteratively maps vertices from q to G
by following a fixed order of query vertices. There are many
algorithms proposed to improve the efficiency of the classic
Ullmann algorithm, including VF2 [23], QuickSI [24],
GraphQL [25], SPath [26], TurboISO [27], CFL-Match [28],
and DAF [29]. Specifically, VF2 [23] generated the matching
order by selecting a vertex connected to one of the already
selected vertices rather than a randomly selected vertex.
QuickSI [24] created a matching order based on an infre-
quent-labels first strategy. GraphQL [25] and SPath [26]
focused on reducing the candidates of query vertices by
exploiting infrequent paths. TurboISO [27] further reduced

Fig. 15. Case study on DBLP with double-star query graph.

Fig. 16. Case study on DBLP with 5-clique query graph.

TABLE 2
The Number of Different Types With Varying u on HCWs

u Total MED NUR PAT ADM

5 520 76 279 47 18
10 162 33 105 16 8
15 84 14 57 8 5
20 54 6 40 4 4
25 45 0 38 3 4
30 33 0 28 2 3

Fig. 17. The ratio of different type with varying u on HCWs.
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the unnecessary cartesian products by employing neighbor-
hood equivalence class to merge similar vertices in a query
graph q. Ren et al. [30] improved the efficiency of TurboISO
based on a technique of compressing the data graph G.
CFL-Match [28] made use of the spanning tree instead of
the original query graph to postpone cartesian products.
Han et al. proposed DAF [29] which employs the knowledge
learned from past computations to reduce redundant com-
putations. The performance of these subgraph matching
algorithms was compared in several previous studies [31],
[32]. Most of those improved algorithms mentioned above
are tailored for static and labeled graphs. In this work, we
investigate a new subgraph isomorphism problem in unla-
beled temporal graphs and the algorithms mentioned above
cannot be directly used for efficiently solving our problem.

Temporal Graph Analysis. Our work is also related to tem-
poral graph analysis which has attracted much attention in
recent years [17], [33], [34], [35], [36], [37], [38], [39], [40],
[41], [42], [43]. For example, Bansal et al. [33] studied the
problem of identifying keyword clusters in large collections
of blog posts for specific temporal intervals. Li et al. [35]
introduced a persistent community model and developed
algorithms to efficiently solve this problem. Gurukar et al.
[17] proposed an algorithm to identify the recurring sub-
graphs in a temporal graph. Recently, the subgraph isomor-
phism problem in temporal graphs has been studied.
Redmond and Cunningham [39] introduced a time-respect-
ing subgraph isomorphism problem which requires the
edges of the query graph following a temporal order.
Semertzidis et al. [40] studied the problem of mining dura-
ble subgraph patterns in a temporal graph. Franzke et al.
[41] investigated the problem of pattern search in temporal
graphs, which focuses on whether the subgraphs exist after
Dt time satisfying that the temporal order of edges is consis-
tent with the temporal pattern. Thus, their model only
searches isomorphisms within a fixed time interval, which
cannot be used to measure the stability. Wang et al. [44]
introduced a temporal stable community model based on
the temporal similarity of edges and developed algorithms
by extending the Louvain method to detect stable communi-
ties. Since the definition of our problem is different from
those of the above problems, all the existing techniques can-
not be directly applied for solving our problem. To the best
of our knowledge, our work is the first to apply the BCC

indexing technique to solve the stable subgraph isomor-
phism search problem in temporal networks.

8 CONCLUSION

In this paper, we study the problem of finding stable sub-
graph isomorphisms in temporal graphs. To solve the prob-
lem, we first develop a pruning-based search algorithm
based on several non-trivial pruning techniques which can
significantly reduce unpromising intermediate results dur-
ing the search procedure. To further improve the efficiency,
we propose a novel index structure, called BCCIndex, to sup-
port the stable subgraph isomorphism search in temporal
graphs efficiently. We also develop an efficient query proc-
essing algorithm based on the BCCIndex and an efficient tree
join technique. Finally, we conduct extensive experiments
using four real-life datasets to evaluate the efficiency of the

proposed algorithms. The results show that the index-based
solution BCCIndexSearch is around 1-3 orders of magnitude
faster than the PruneSearch algorithm. The results also show
that our parallel implementations for both pruning-based
search and index-based search algorithms can achieve very
high speedup ratios. Finally, we conduct a case study in
DBLP and the results demonstrate that our solution for sta-
ble subgraph isomorphism search can be useful to identify
stable research groups in DBLP.
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